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We present the first truly scalable First-Principles Molecular Dynamics algorithm with O(N) com-
plexity and fully controllable accuracy, capable of simulating systems of sizes that were previously
impossible with this degree of accuracy. By avoiding global communication, we have extended W.
Kohn’s condensed matter “nearsightedness” principle [1] to a practical computational scheme ca-
pable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference
discretization, the size of the localization regions in which the electronic wavefunctions are confined,
and a cutoff beyond which the components of the overlap matrix can be omitted when computing
selected elements of its inverse. We demonstrate the algorithm’s excellent parallel scaling for up to
101,952 atoms on 23,328 processors, with a wall-clock time of the order of one minute per molecular
dynamics time step and numerical error on the forces of less than 7 · 10−4 Ha/Bohr.

Predictive materials simulation is becoming ever more
important in a variety of fields. Density Functional
Theory (DFT)[2, 3] simulations are widely used and
are already helping in understanding, designing, control-
ling and manufacturing advanced materials [4]. First-
Principles Molecular Dynamics (FPMD) is a general and
fundamental predictive tool to study matter at atom-
istic scale. FPMD typically uses the Born-Oppenheimer
approximation and requires solving the equations of
DFT, the Kohn-Sham (KS) equations to obtain the elec-
tronic structure and calculate forces acting on the atoms.
FPMD simulations, however, are limited to a few hun-
dred atoms for tens of picoseconds due to their compu-
tational cost and the O(N3) complexity of typical DFT
solvers. In addition, because each electronic wavefunc-
tion spreads over the whole simulation domain, and be-
cause values such as dot products between pairs of wave-
functions are needed to solve the KS equations, these cal-
culations involve many global operations. This is a prob-
lem for large parallel computers where a key to fast sim-
ulation is to reduce global communications. Advanced
O(N3) algorithms and implementations have been de-
veloped to distribute computational work efficiently on
large parallel computers [5]. Pushing such a strategies
on today largest computers has enabled very large cal-
culations. Hasegawa et al.[6] have been able to simulate
107,292 atoms on one of the largest supercomputers in
the world, but with a time to solution far too long to be
used in FPMD applications.

Anticipating these issues, there has been a lot of re-
search on the development of O(N) complexity algo-
rithms in the last two decades (for a recent review, see
[7]). However, to make efficient use of large parallel com-
puters, O(N) complexity alone is not enough. Optimal
algorithms need to also avoid global communications, a
key hurdle which has not been addressed by most pro-
posed O(N) algorithms, making them difficult to scale
beyond a few thousand processors. One category of al-
gorithms with no major global communications is the

so-called “Divide and Conquer” [8–10]. Dividing a prob-
lem into sub-problems can however be quite tricky. It
can lead to hard-to-quantify errors [11].

To make effective use of unprecedented levels of con-
currency and sheer number of processors on today’s
largest computers, new mathematical formulations and
algorithms are needed. Algorithms with reduced com-
plexity and better parallel scaling are essential to enable
more realistic modeling on large high-performance com-
puters. For example, having the capabilities of simulat-
ing tens of thousands of atoms on a routine basis will
enable material scientists to model systems with inter-
faces, irregularities, large defects, or heterogeneous sys-
tems instead of perfect crystals. This will help bridge
the gap between the atomistic scale and the meso and
macroscopic levels of descriptions.

In this Letter, we present the first truly scalable FPMD
algorithm with O(N) complexity and fully controllable
accuracy, capable of simulating systems of sizes that were
previously impossible. This extends W. Kohn’s “near-
sightedness” principle [1] in physical condensed matter
systems to a computational “nearsightedness” principle.
Our approach relies on the existence of well-localized gen-
eralized maximally localized Wannier functions (MLWF)
[12], which exist in insulators with a finite band gap [13].
We use a real-space representation of the wavefunctions
given by their values at each node of a uniform finite dif-
ference mesh[14], but other representations are possible.
Exploiting the exponential decay of off-diagonal elements
of the single particle density matrix is not a practical so-
lution for density matrices obtained directly from these
discretizations, because these matrices are too large and
have too many non-zero elements. However, the dimen-
sion of these matrices can be reduced by first computing
the solution of the KS equations on a mesh using orbitals
confined to finite spherical regions[15, 16], and effectively
obtain a minimal localized basis set similar to MLWF
but with strictly localized orbitals. We then make use of
decaying properties of matrices associated to this inter-
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mediate basis set of localized functions.
Neglecting the spin, the electronic structure of a phys-

ical system made of 2N valence electrons is represented
by N non-orthogonal wavefunctions {ϕ}Ni=1 which span
the sub-space of occupied states. The electronic ground
state minimizes the DFT energy functional

EKS [{ϕi}Ni=1] =
N∑

i,j=1

(
S−1

)
ij

∫
Ω

ϕi(r)
(
−∇2

)
ϕj(r)dr

+
1

2

∫
Ω

∫
Ω

ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 + EXC [ρ](1)

+
N∑

i,j=1

2
(
S−1

)
ij

∫
Ω

ϕi(r)(Vextϕj)(r)dr.

where the terms on the right side are the kinetic en-
ergy, the electrostatic energy, the exchange and corre-
lation energy, and the potential energy of the electrons
in the potential Vext modeling the atomic cores. We
use the pseudopotential approximation in its Kleinman-
Bylander form [17] and the PBE exchange correlation
functional[18]. The N × N matrix S is the overlap ma-
trix, Sij =

∫
Ω
ϕi(r)ϕj(r). There is no orthonormality

constraint in this formulation. The wavefunctions have
to remain non-degenerate and the matrix S−1 needs to
be calculated and be consistent with the wavefunctions at
every step of the iterative solution. In this formulation,
the electronic density ρ appears in the form

ρ(r) = 2
N∑

i,j=1

(S−1)ijϕi(r)ϕj(r). (2)

One can represent the solution of the minimization
problem in Eq. 1 as a matrix Φ whose columns are made
of the functions ϕi, i = 1, . . . , N . The advantage of this
general non-orthogonal representation is that one can
find transforms Φ̃ = ΦC such that Φ̃ is sparse, or at least
such that many of its coefficients can be neglected. Such
a transform is given by the Maximally Localized Wannier
functions [12], which minimize Eq.(1) but are much more
localized than eigenfunctions. Instead of calculating this
transformation — which requires O(N3) operations —,
one can prescribe a priori strict confinement regions, one
for each ϕi. Minimizing (1) under these constraints lead
to a sparse solution very similar to MLWF, and which
approximates well the exact solution for confinement re-
gions large enough and centered at appropriate locations
[19]. The number of degrees of freedom associated with
each wavefunction is then O(1) and the total number of
degrees of freedom is O(N) [15]. By confining each func-
tion to a strictly local region which does not grow with
the problem size, all the operations to evaluate the en-
ergy functional (1) and its gradient become O(N). The
Hartree potential is solved by a multigrid preconditioned
gradient algorithm, also a scalable O(N) algorithm [20].
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FIG. 1: Inverse entries in one column of S−1 as a function of
the distance between this column and the orbitals associated
with its nonzero entries (1888 atoms polymer sample).

Direct interactions between atoms through their atomic
pseudopotentials are short-range and O(N), using stan-
dard charge screening techniques [15]. Thus the only
remaining O(N3) operation is the computation of S−1.

We chose a domain decomposition approach, dividing
the mesh evenly among all processors. In our implemen-
tation, each processor is responsible for the data associ-
ated to the local sub-domain, in particular the parts of
the functions which overlap with the local mesh. It is also
responsible for calculating partial dot product contribu-
tions from the local partial functions. While calculating
S−1 requires O(N3) operations, it takes little time com-
pared to other operations in a standard O(N3) approach,
and its cubic scaling can even be ignored in O(N) calcula-
tions for values of N up to a few thousands[14, 16]. How-
ever, one major issue is the global character of this com-
putation: its exact calculation involves all the elements of
S, which are distributed across all subdomains in a par-
allel framework. In other words, S−1 is a global coupling
matrix, and its computation poses a major bottleneck for
parallel scaling. From Eq.(1) and (2), it is clear that the
only elements of S−1 needed are those of indices (i, j) cor-
responding to non-zero dot products between ϕi and ϕj ,
−∇2ϕj or Vextϕj . Other algorithms have been proposed
in the literature for computing selected entries of the in-
verse of sparse symmetric matrices [21–23]. They rely on
efficient Cholesky factorizations and divide-and-conquer
strategies to compute exact entries of the inverse. How-
ever, they exhibit nonlinear complexity which will affect
the overall complexity at large scale. The authors of [7]
review a number methods for approximating the inverse
of the Gram matrix for O(N) electronic structure cal-
culations. For most of these methods, linear scaling is
achieved by enforcing some sparsity constraints on the
matrix. However, the parallel implementations of these
algorithms generally require some global coupling or fre-
quent communication, which can affect parallel efficiency.

The matrix S is symmetric, positive definite and its
eigenvalue spectrum is bounded independently of its size.
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As a result, S−1 has off-diagonal coefficients that decay
exponentially [24, 25]. Figure 1 gives an illustration of
this result. Although S−1 is a dense matrix, this de-
cay property allows for a sparse representation in which
small terms can be dropped and numerical error can be
systematically controlled with a single cutoff parameter.
Our approach for computing S−1 is based on the ap-
proximate inverse strategy [26–28]. The general idea is
to obtain a matrix M that satisfies

arg min
M∈RN×N

∥SM − I∥

in the Frobenius norm, where I is the identity matrix.
Typically, this is achieved by constructing from S, a
smaller k × k matrix, Ŝj , where k ≤ N , and solving

Ŝjm̂j = ej

for each column j of M . Here, ej represents the j-th col-
umn of I. The solution m̂j expands into column j of M
so that its non-zero entries approximates corresponding
entries in S−1. The matrix Ŝj is derived from a prede-
termined sparsity pattern imposed on the j-th column
of M . For each column j of M , the non-zero pattern is
obtained by considering only entries associated with lo-
cal orbitals centered within some distance Rs, from the
local orbital j. Thus Rs controls the block size k. A
larger Rs yields a larger k and a more accurate approxi-
mation to S−1. Moreover, since partial contributions to
the matrix S are distributed across the processors, Rs

also determines the extents from which to gather data
to construct Ŝj . An efficient communication strategy is
used to gather partial contributions from adjacent pro-
cessors. The algorithm processes data one direction at a
time. Each processor communicates only with its two ad-
jacent neighbors in one dimension, collecting and passing
down data until all the data needed has been gathered.
The process is then repeated in the other two dimensions.
The result is that the cost of sending and receiving data
from a 3D cluster of processors is reduced from the vol-
ume of the cluster, to the sum of the size of the cluster in
each dimension. In our implementation, each processor
only solves for the columns of M corresponding to the
local orbitals centered on its local subdomain. Thus, one
only needs to gather enough data to construct a single
local block matrix Ŝ that can be used to solve for all
the columns of M corresponding to these orbitals. An
important observation is that for a given accuracy of the
approximation to S−1, the size of Ŝ is independent of the
size of the global matrix S. Each linear system solve for
the columns ofM is done with a GMRES [29] accelerator,
coupled with an ILU(0) preconditioner [30]. The precon-
ditioner is constructed only once at the beginning of each
MD step using the initial Ŝ, and used throughout the it-
erative process to solve for the electronic structure in this
MD step. GMRES convergence is typically achieved in
five iterations or less.
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FIG. 2: Parallel weak scaling: wall clock time for 1 MD
step on IBM BGQ architecture and Intel Xeon EP X5660
Linux cluster with High-speed interconnect (InfiniBand QDR
QLogic) as a function of number of atoms and number of MPI
tasks.

There is in principle no limit to parallel scaling for
our algorithm. We demonstrate scalability up to 101,952
atoms on 23,328 cpus using the Lawrence Livermore Na-
tional Laboratory IBM BGQ computer. We apply our
algorithm to a polymer system with 1.05 g/cm3 density.
We start with a unit cell of size 30.568 Bohr containing
472 atoms, which results in 536 doubly occupied elec-
tronic orbitals. We replicate this system by a factor 2, 3,
4, 5 and 6 in each 3D direction to generate larger simu-
lation cells and study parallel scaling. We scale up the
number of atoms, while scaling up the number of proces-
sors at the same rate, that is, with a constant number of
MPI tasks/atom (weak scaling study). Wall clock times
for one MD step are shown in Fig. 2. One MD step typ-
ically involves about 15 updates for each wavefunction
in our DFT iterative solution. For this particular test
application, once a sufficiently large number of proces-
sors and atoms has been reached, each processor needs to
communicate only within a neighborhood of 9×9×5 pro-
cessors (sub-domains are not cubic). Using our commu-
nication algorithm of successive directions, that means a
total number of 20 (8+8+4) sends and receives for each
MPI task. This corresponds to gathering and inverting
matrix blocks of sizes ≈ 2400.

There are three parameters to tune the accuracy of our
calculations: the mesh spacing h, the confinement region
radius Rc and the truncation radius for computing S−1,
RS . We use a 4th order finite difference scheme which
leads to a discretization error O(h4) for the energy and
forces[19]. The effect of confining orbitals in regions of
radius Rc is assessed by comparing computed forces with
the results of a full O(N3) calculation for the 472 atoms
system, see Fig. 3. We observe an exponential decay
of the error as a function of Rc. Rc = 9 Bohr — max.
error of 6.4 · 10−4 (Ha/Bohr) — is used to evaluate the
additional error on atomic forces introduced by truncat-
ing elements when calculating S−1. Fig. 4 displays that
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form each block in overlap inverse computation (average and
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error as a function of the range within which matrix el-
ements are gathered to approximate S−1. The reference
result we compare with is the one obtained with inverting
the full matrix S, with Rc = 9 Bohr. We also observe an
exponential decay of the error as a function of RS . Rc=
9 Bohr and Rs= 18 Bohr lead to accurate forces and were
used for the weak scaling study in Fig. 2.

At this time, we have a pure MPI implementation of
our algorithm and the numbers in Fig. 2 correspond to
a load close to the strong scaling limit. This already
provides a time to solution close to one minute per MD
step. Faster time to solution however are achievable by
using threading, in particular on IBM BGQ architecture.
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